No Examples Found
YOLOv8
Ultralytics YOLOv8, an acclaimed real-time object detection model.
Check out the original repo here.
Supported Models and Pricing
We support the following YOLOv8 models.
Model | Description | Price per minute of input video (@ 30 fps) | Price per image |
---|---|---|---|
yolov8l | YOLOv8-Large | $0.027 | $0.0027 |
yolov8n | YOLOv8-Nano | $0.010 | $0.001 |
yolov8l-face | YOLOv8-Large trained on the WIDER FACE dataset | $0.056 | $0.0056 |
yolov8n-face | YOLOv8-Nano trained on the WIDER FACE dataset | $0.010 | $0.001 |
yolov8s-world | YOLOv8-Small used for open-vocabulary object detection (specify any object you want to detect) | $0.016 | $0.0016 |
yolov8l-world | YOLOv8-Large used for open-vocabulary object detection (specify any object you want to detect) | $0.034 | $0.0034 |
We charge rates for each model per minute of video at 30fps. If multiple models are passed via the models
parameter, the price will be the sum of the prices for each model. Videos with a different fps (native, or specified via the fps
parameter) will be pro-rated.
Output Format
The model returns a dictionary with the following structure:
{
"boxes": [
{
"x1": 281.36834716796875,
"y1": 114.6531982421875,
"x2": 937.3942260742188,
"y2": 712.1339111328125,
"width": 656.02587890625,
"height": 597.480712890625,
"confidence": 0.9540532827377319,
"class_number": 0,
"class_name": "person"
},
{
"x1": 932.1299438476562,
"y1": 610.4577026367188,
"x2": 1279.69775390625,
"y2": 711.7876586914062,
"width": 347.56781005859375,
"height": 101.3299560546875,
"confidence": 0.6923111081123352,
"class_number": 56,
"class_name": "chair"
}
],
"frame_number": 0
}
Each box in the "boxes" array represents a detected object. The fields "x1", "y1", "x2", "y2" represent the coordinates of the top left and bottom right corners of the bounding box respectively. The "width" and "height" fields represent the width and height of the bounding box. The "confidence" field represents the confidence score of the detection. The "class_number" and "class_name" fields represent the class of the detected object.
Classes
If you are using the yolov8l-world
or yolov8s-world
models, you can specify any object you want to detect using the classes
parameter.
Otherwise, there are 80 classes to choose from for detections. These are the possible detection classes:
"classes": {
0: "person",
1: "bicycle",
2: "car",
3: "motorcycle",
4: "airplane",
5: "bus",
6: "train",
7: "truck",
8: "boat",
9: "traffic light",
10: "fire hydrant",
11: "stop sign",
12: "parking meter",
13: "bench",
14: "bird",
15: "cat",
16: "dog",
17: "horse",
18: "sheep",
19: "cow",
20: "elephant",
21: "bear",
22: "zebra",
23: "giraffe",
24: "backpack",
25: "umbrella",
26: "handbag",
27: "tie",
28: "suitcase",
29: "frisbee",
30: "skis",
31: "snowboard",
32: "sports ball",
33: "kite",
34: "baseball bat",
35: "baseball glove",
36: "skateboard",
37: "surfboard",
38: "tennis racket",
39: "bottle",
40: "wine glass",
41: "cup",
42: "fork",
43: "knife",
44: "spoon",
45: "bowl",
46: "banana",
47: "apple",
48: "sandwich",
49: "orange",
50: "broccoli",
51: "carrot",
52: "hot dog",
53: "pizza",
54: "donut",
55: "cake",
56: "chair",
57: "couch",
58: "potted plant",
59: "bed",
60: "dining table",
61: "toilet",
62: "tv",
63: "laptop",
64: "mouse",
65: "remote",
66: "keyboard",
67: "cell phone",
68: "microwave",
69: "oven",
70: "toaster",
71: "sink",
72: "refrigerator",
73: "book",
74: "clock",
75: "vase",
76: "scissors",
77: "teddy bear",
78: "hair drier",
79: "toothbrush"
}